
Selective Stimulation and Measurement in the Cochlear Nucleus
with the Spike Microelectrode Array

F. MASE1, H. TAKAHASHI1, T. EJIRI1, M. NAKAO1, N. NAKAMURA2, K. KAGA2, T. HERVÉ3

1Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
2Faculty of Medicine, The University of Tokyo, Tokyo, Japan

3TIMC-IMAG, Grenoble, France

Abstract- Current prosthetic devices to restore hearing sense of
patients with bilateral acoustic neuromas aren’t always effective,
because we don’t have sufficient knowledge of the auditory
pathways and the Cochlear Nucleus (CN) functions to stimulate
the Cochlear Nucleus functionally.  Our goals are to enhance
our understanding of such functions and to develop effective
stimulating strategies of the CN.  In this paper, we fabricate the
spike microelectrode array with 16-sites in 1.3mm-square area
for stimulation and measurement of the CN and show its
feasibility through rats’ experiments. In the experiments,
spatiotemporal responses in the CN are recorded with the
electrode.  Electrical stimulation at different sites with different
current amplitudes exhibits different spatiotemporal patterns
on the Auditory Cortex.  These results will provide useful
information to study the auditory pathways and the CN functions
and to develop stmulating strategies.
Keywords- microelectrode, cochlear nucleus, electrical
stimulation, Auditory Brainstem Implant

I. INTRODUCTION
The auditory brainstem implant (ABI) that restores hearing

by direct stimulation of the Cochlear Nucleus (CN) with an
electrode array has been clinically applied.  Few patients,
however, benefit from the use of the device [1]-[4]. One possible
reason for this poor efficacy of ABI is lack of the knowledge
about auditory pathways, especially concerning the CN
functions.  Accordingly, the CN has not been effectively
stimulated.  Conventional studies about the CN with glass pipet
needle or single microelectrode have enhanced our knowledge
about specific function of individual neurons or interaction
between nearby neurons.  However, little is known about overall
functions of the CN [5]-[10]. In order to clarify these functions,
spatiotemporal information obtained by multi-point electrodes
may be useful.  In addition, it is useful to study responses in the
central nerve system to the electrical CN stimulation because
those data demonstrate how activation of discrete portions in
the CN affect the processing in the central nerve system.

In order to study auditory pathways and develop effective
stimulating strategies, we have developed the system that can
measure and stimulate neuronal activities at multiple sites in
the CN and can record them on the Auditory Cortex (AC).  So
far, we have developed the surface microelectrode that measures
spatiotemporal patterns on the AC [11].  In this paper, we
describe a spike microelectrode array for multi-point recording
and stimulation in the CN.  In rats’ experiments with the electrode,
we measure spatiotemporal responses to the auditory
stimulation and stimulate the CN.  These experiments show the
utility of the system and present results.

II. MATERIALS AND METHODS
A. Electrode fabrication

A spike microelectrode array must be long and slender
enough to reach the CN located in a relatively deep position of

the rats’ brain.  The electrode, shown in Fig.1, is designed to
have 16 stimulating and recording sites in 1.3mm-square area.
The spike microelectrode array is fabricated by three steps as
shown in Fig.2:  Substrate fabrication (1),  Assembly of the
electrode array (2),  and Tip processing (3).

In substrate fabrication process, a glass mold is etched to
make 100µm wide and 100µm deep trenches at 400µm intervals
with polystyrene sandblast processing.  The pattern of trenches
was copied on the substrate by pressing the mold (1).  In
assembly process, 100µm diameter tungsten rods are aligned in
the trenches of the substrate to make a single layer.  After
assembly of each layer, 4-layers are pressed and bonded (2).  In
tip processing, the tips are aligned to the same height with
electro-discharging, in which 200 volts were applied between
each tip and the 1-M NaOH water solution.  The tip shapes are
modified by electro-polishing at 2 volts in the 1-M NaOH water
solution (3).  A polishing period and the reciprocation stroke
determine the tip diameter (between 2-3µm and 100µm) and the
tip tapers, respectively (Fig.1 (b)).  Finally, liquid polyimide is
coated on the tips to make the insulation layers, and insulation
at the tips is removed by electro-discharging (Fig.1 (c)).  1.27mm
pitch sockets for integrated circuit are employed for wiring, in
which other edges of tungsten rods are directly inserted and
soldered.
B. Animal preparation

All experiments were performed in accordance with the
guideline of the Animal Experiments Committee of the University
of Tokyo.  Fig.4 shows a schema of the experimental setup.
Adult albino rats with normal ABR weighting 200-300g were
used.  Each animal was anesthetized with Ketamine (50mg/kg)
and Xylazine (7mg/kg).  The cerebellum was exposed and partly
removed to expose the CN.  The spike microelectrode array was
introduced to the CN at about 50µm depth.  The AC was also
exposed and the surface microelectrode was mounted on the
AC with keeping the dura mater intact.  Fig.3 shows the surface
electrode that has 32 recording-sites in 2mm-square area [11].
Sockets of integrated circuits were positioned at vertex, and at
7mm anterior to vertex, as reference and ground electrode,
respectively.
C. Experimental protocol
1) Auditory Evoked Potentials in the CN:   16-Auditory Evoked
Potentials (AEPs) in the CN were recorded with the spike
microelectrode array.  The auditory stimuli were alternating clicks
at 90dB SPL delivered through a speaker located 20cm in front
of the rat’s head.  32-AEPs were amplified and filtered with a
band-pass of 50-1500Hz. Each signal was averaged over 15 trials.
2) Electrically Evoked Potentials on the AC:   The CN was
stimulated with the spike microelectrode array, and 32-Electrically
Evoked Potentials (EEPs) on the AC were measured with the
surface electrode.  Preceding CN stimulation, AEPs were also
measured in the CN.  In this protocol, the spike microelectrode
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Fig. 2  Process flow of the spike microelectrode array.  (a)Substrate
fabrication. (b)Assembly of the electrode array. (c)Tip processing

Fig. 1 Photo of the spike microelectrode array.  (a)Whole view.
 (b)Tip view. (c)Magnification of the tip.

Fig. 3 Photo of the surface microelectrode.  (a)Whole view.
(b)Tip view.

Fig. 4 Schema of the experimental setup

Fig. 5 AEPs acquired with the spike microelectrode array in the
Cochlear Nucleus (a) and their color-coded potential distribution
patterns at each latency (b). Black dots in the distribution pattern
correspond to the location of recordingsites. (Abbreviations:D:dorsal,
V:ventral, R:rostral, C:caudal)
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array with 4-sites was employed for the stimulation and recording
and each site was labeled A, B, C, and D in order from a caudal
site to a rostral site.  In addition, 32-AEPs on the same area of
the AC were measured as reference.  The electrical stimuli were
monopolar and biphasic charge-balanced constant-current
pulses with a total duration of 200µs and an amplitude ranging
from 150 to 200µA. Evoked Potentials are presented as described
above.

III. RESULTS
Fig.5 (a) shows 16-AEPs in the CN acquired with the spike

microelectrode array.  Time-series AEPs distributions patterns,
based on the data of Fig.5 (a), are shown in Fig.5 (b).  The large
responses were recorded at 3 spots of each figure.

Fig.6 (a) shows 32-AEPs on the AC detected with the surface
electrode as reference to following EEPs.  Fig.6 (b) shows time-
series AEPs distribution patterns.  Different responses at each
site are observed, and large responses travel from the rostro-
ventral area to the caudro-dorsal area.  Fig.7 shows 4-AEPs in
the CN acquired with the 4-spike microelectrode array.  In case
of B, C, and D, large responses over 100µV are recorded, whereas
site A exhibits far smaller response than others.  Then, 32-EEPs
were recorded.  The stimulation of A didn’t elicit significant
EEPs, while that of B, C, and D result in large responses.  Fig.8
(b) and (d) shows 32-EEPs in response to the CN stimulation at
site B and D, respectively.  Red and blue lines indicate differences
in stimulating amplitude: red, 150µA; blue, 200µA. EEPs elicited
by the C stimulation were almost the same as those by D.  Fig.9
(b), and (d) show time-series EEPs distribution patterns.  The
stimulation at site B elicited large responses at the rostro-ventral
area of the AC, while D elicited large responses at the caudro-
dorsal area.

Fig.10 shows the average amplitude of largest peaks recorded
at each recording site of the AC, when stimulating with different
amplitude (150µA, 200µA) at different sites (B, C, and D)
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Fig.8 EEPs acquired with the surface microelectrode on the Auditory
Cortex in response to electrical stimulating B site (b), and D site (d). Red
and blue lines correspond to responses to the stimulation at 150µA and
200µA, respectively. Pink and black lines, whose recording sites were not
available, are average responses of the surrounding sites.

Fig.7 AEPs acquired  with the 4-spike microelectrode array in the Cochlear
Nucleus

Fig.6 AEPs acquired with the surface microelectrode on the Auditory
Cortex in response to Click sounds (a) and their color-coded potential
distribution patterns at each latency (b). Gray lines, whose recording sites
weren’t available, are average responses of surrounding sites.
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Fig.9 Color-coded potential distribution patterns on the Auditory Cortex
at each latency in response to electrical stimulating site-B (b), D (d).

Fig.10 The avarage amplitude of largest peaks recorded at each site of
the surface microelectrode on the Auditory Cortex

IV. DISCUSSION
The feasibility of the spike microelectrode array was

demonstrated through multi-point recording and selective
stimulation in the CN.  In the last decade, multi-point electrodes
based on MEMS technology have been reported and their
feasibility have been documented through multi-point recording
and stimulation experiments [12]-[15].  Compared with these
multi-point electrodes, the spike electrode array is easier to
fabricate and to make the array as demanded in particular
experiments such as whole shape, tip diameter, probe interval,
total number of probes, probe material, and coating, while the
spatial resolution is almost the same as that of the silicon-
electrodes.  For instance, the tip diameter should be a few micros
for counting firing rate and should be thicker for measuring
field potentials of relatively large areas.

Present experiments exhibit: 1) significant spatiotemporal
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activities in the CN can be recorded in response to the auditory
stimulation;  2) electrical stimuli at different sites or different
amplitudes result in different responses on the AC.

Three strongly activated areas in the CN as shown in Fig.5
(b) may correspond to the PosteroVentral Cochlear Nucleus
(PVCN), the AnteroVentral Cochlear Nucleus (AVCN), and the
Dorsal Cochlear Nucleus (DCN), according to the cerebral atlas.
These nuclei have different features:  DCN is thought as primary
auditory pathways which have fine-tune tonotopic organization;
AVCN is thought as non-primary auditory pathways that just
relay afferent signals;  PVCN has the feature of both DCN and
AVCN [16].  However, since these functions were examined by
single neuron recordings, little is known how they interact in
signal processing and how each nucleus affects the central
auditory pathways.  Therefore, to measure spatiotemporal
activities of both the CN and the AC may be useful in order to
enhance further understanding of these CN functions.

Our present results show that electrical stimulation at various
portions of the CN may contribute to our understanding of the
auditory pathways as well as the CN functions.  AEPs on the
AC show two strongly activated areas of the caudro-dorsal
portion and the rostro-ventral portion, which may correspond
to the primary auditory area (AI) and anterior auditory field
(AAF) as reported by Horikawa [17].  The AAF was activated
by stimulation at site B or C, while the AI was activated by
stimulation at D as shown in Fig.7.  In addition, when stimulating
D, different stimulating amplitudes caused different responding
potentials in the AI, but caused no significant changes in the
AAF.  These results indicate that specific portions of the CN
might project to specific fields of the AC.  Stimulating amplitude
also suggests interesting characteristic of the auditory
pathways; EEPs amplitudes evoked by the stimulation at B or C
increased as stimulating amplitude increased, while those by D
decreased.  When stimulating D, possibly, activation in the
peripheral portions may cause inactivation in the central
auditory pathways.  These results suggest we should consider,
when developing new generation ABI, inhibitory effects.

Although these data are still preliminary, they will provide
useful information for understanding the CN functions and the
interaction between the CN and the central auditory pathways.

V. CONCLUSION
This paper described the spike microelectrode array for multi-

point neural stimulation and recording and showed its feasibility.
In recording experiments, spatiotemporal patterns of Auditory
Evoked Potentials in the Cochlear Nucleus (CN) were obtained
with 16-sites microelectrode.  In stimulating experiments,
selective stimulation of the CN with 4-sites microelectrode was
demonstrated through Electrically Evoked Potentials on the
Auditory Cortex recorded with the surface microelectrode.  These
results could help to understand the complex organization of
the CN and overall auditory pathway functions, and to develop
effective stimulating strategies of the CN.
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